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THE T~NSF~R~ATI~N OF LINEAR NON-STATIONARY OBSERVABLE AND &ONTROLL~LE 
SYSTEMS INTO STATIONARY SYSTEMS* 

N.B. VAVILOVA, V.I. K.X_ENWA and V.M. MOROZOV 

The methodclogical problems of the reducibility of some classes of linear 
non-stationary observable and contrcllable systems to stationary systems 
is considered. The constructive use of this property to analyse the 
coatrollabiiity and observability of non-stationary systems, and also to 
solve applied control and estimation problems, is proposed. 

For practical applications the separation of the classes of non- 
stationary systems, which can be investigated using simpie and effective 
methods sirilar to those for analysing stationary systems, is of interest. 
Linear non-stationary systems for which the fundamental matrix of the 
soiutions can be algorithmically simply constructed using the matrix of the 
coefficients, pertain to these calsses; in particular systems which can be 
reduced to stationary systems /l--5/ using the well-known non-degenerate 
transformation, and also systems which are Lyapunov-reducible /6, 7/. 
Although for non-stationary systems the sufficient conditions for control- 
labiiity and observability which do not require a knowledge of the funda- 
mental matrix of the initial system /8-lo/are known, the search for 
constructive transformations which reduce the initial system to a form 
suitable for analysing and synthesizing simple control and estimation 
algorithms is important and useful. 

1. Consider the linear non-stationary system 

I' = A (t) f + B (f) ii. 0 = c (t) I (1-l) 

where 5 is an n-dimensional state vector of the system, u is an r-dimensional vector of the 

controlling action, a is a k-dimensional vector of measurements and A (t). B (f), C (1) are 
matrices of corresponding dimensions, the elements of which are continuously differentiable 

l prikl.Hatem.Mekhan.,49,4,54B-555,1985 
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functions of time t. 
It is known that in a number of cases /l-5/the fundamental matrix of system (1.1) can 

be found in explicit form using the elements of the matrix A (t), in particular when the matrix 
A(f) belongs to one of the following classes: 1) the constant matrix, 2) the diagonal matrix, 
3) the triangular matrix, 4) satisfies the condition 

A(t)[iA(~)d+[iA(r)dr]A(t) 
0 10 

(1.2) 

5) the matrix A,= const and the non-zero function Y(t) exist, such that 

if Y(t)= 1, then A (t) obeys the equation 

A' (f) = A,A (t) - A (I) A, (1.3) 

Other cases, including more general ones, in which the matrix A (f)is subject to fairly 
complex conditions, are presented in /l, 2, 5/, Note that one special class of matrices 
A (1) - which satisfy condition (1.2), considered in /3/ - was previously investigated in a 
more general form /2/. 

We will consider systems of the form (l.l), in which the fundamental matrix can be found 
in closed form. We shail determine the conditions for reducing the non-stationary system 
(1.1) tc a stationary system. 

2. Suppose @((1) is the fundamental matrix of the system, corresponding to the first 
equation (1.1) (0 (to) = E). Then the linear transformation 

2 = Q, (1) y i.2 .l) 

reduces system (1.1) to the form 

y' = ,y (f) U. u = H ff) y (2.2) 

(H (f) = C (f) Q) (1). .v (I) = cl-1 (f)B (2)) 

Theorem 1. Using a linear non-degenerate transformation we can reduce (2.2) to a com- 
pletely stationary system of the same order 

2' = Rz - .Ilu. o = t; (2.31 

(containing the matrices z (n .' 1). R (n 11). .I/ (n r). L (k Y. n)) only when the matrices H (1). 
.\‘(r) satisfy the equations 

H' = HG, .I-' = -G.\ (2.4) 

(G (n x )z) is a constant matrix:. At the same time the matrices R.L and M ir. system (2.3) 
are determined by the relations 

R = G. L = H (1,). .\I = .Y (f,,) 

Proof. Sufilciencg. The transfc-mation y = c\p (-G(t- to))2 reduces (2.23 to the folrn 

3' = G; - .V (1,) U. o = H (f,) I 

PJecessi ty. SIQ~OSE the transformation y = Q- red.Jces (2.2) tc the form (2.3;. Then 
the matrix Q (1) satisfies the equation Q' = -OR (Q(tO)= E). Differentiating the equations 
H (f)c' (f)= L. A' (f) = Q (f) .If we sbtain H' = HR. .V' = -R.Y. 

For the first equation (1.1) with matrix rl (0 of the above type, besides the transforma- 
tion (2.1) other linear non-degenerate transfcrmaticns alsc exist, reducing (1.1) to the form 

I" = A'r' 7 B' (1) u. o = C' (f)r'; A' = const (2.53 

In particular, if the matrix A (1) satisfies condition (1.3), the transformation I= 
esp (,4, (1 - 1,)) 2' reduces the first equation (1.1) to the form (2.51, where A' = A (fO)-Al. 

Note that any system (1.11, in which a system corresponding tc the first equation (1.1) 
when B (f)~ 0 is reducible in Lyapunov's sense /6, 7i can be transformed to the form (2.5). 

Consider system (2.5:. The transformation z'= esp (A'(1 - 10))y reduces this system to 
the form (2.2), where 

H (f) = C' (f) esp (A' (1 - to)!,.?' (f) = exp (--A'(2 - fo))B' (f) 

Then from Theorem 1 we have 

Theorem 2. System (2.5) reduces to the stationary system (2.3) only when the matrices 
C' (f), B' (t) satisfy the equations 

C" = C' I-A' + exp (A' (f - fJ)G exp (-A' (t - f,))J (2.6: 
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B” = [A’ - exp (A’ (t - tO)G exp (---A' (t - to))1 B’ 
(G (n * n) is some constant matrix). 

In particular, if the matrix G is such that the condition A’G = GA’ holds, then C'(t) 
and B'(t) satisfy the equations 

C" z.z C' (-_A' j G). B" = (A’ _G)B’ (2.7) 

Corollary. Suppose the matrices C'(1) and B'(1) obey the equations c" = C'K, B" z 
-KB’, where K is a constant matrix and KA’ = A’K, then the change of variables x' = esp (- 

K (f- 1,))~ reduces (2.5) to the stationary system (2.3), where R = A’ + K, M = B’ (to), L = C’ (1,). 
Note that it is more convenient, without verifying the validity of condition (2.6:, to 

construct the matrices H(t), N(t) and then verify that conditions (2.4) hold. 

3. The theorems formulated in Sect.2 give the necessary and sufficient conditions for 
the possibility of reducing the. non-stationary system of the type considered to a stationary 
system without increasing the order of the initial system. 

Consider the more general,case when the non-stationary system (1.1) can be transformed 
into a completely stationary system using a change of variables which expands the state space. 

We will further assume that in the first equation (1.1) B (t)” 0. Suppose it is reduced 
to the form (A, is a constant matrix) 

Y' = A,Y (3.1) 
using the transformation 

r = T (1) y, det T (1) f 0, Yt 2 t, 

The equation of measurements (the second equation (1.1)) after changing to the new 
variables has the form 

u = C (t) T (t) y = H, (t) y (3.2) 

(when T (t) = CD (f). A, = 0, H, (ti = H (t)) 
For simF;ic:ty, we skall assune tha: the matrix C (t) is a 1 ..: n matrix, then H,(f)= 
where h (t) (n 1.~ 1) hT (Z)& will aCS”~Df t?at is a cclJXJi-matrix. 

..i : hT(t) can be represented in the form 

hT (t) = tr (t) D (3.3: 

where D is some ccnstant m ? n matrix and j (t) is a m t 1 (m > n) vector-function of time 
satisfying the equaticr. 

f’ = Si. S (rn I\ m) = const. (3.1) 

This means, in particuiar, that functions such as polynomials, exponential functions, 
finite sums of trigcnometric f,nctlcr.s, etc., belcr.9 tcthe class of functions h, (t) (i = 1, 2. 

., n) whlc’z BTE cwpcner.ts of the vectcr h(t) and are separated in this way. 
The vectcr-function )iT ii), defined by Eq.f3.3), ic the ger.eraL case does not satisfy an 

equation cf the form :2.7!, and for systcr (3.11- !!.4' the conditions fcr reducing it to a 
stationary system. of the 5ame order Cc net hc?C. In particular, if D = E and h(f) obeys 

Eq.!3.4), it is necesser,' that A,ST= STA,. 

It is shown in .'li,: {see alsc /i2/:, that, USinq the tranSfOLmatiOn 

9 = 2 (1) J/: X (t) = E,, 5 .f (t) (5.5) 

where x (1) is an ma .I n matrix, q is an mn / 1 vector, E, 01 ‘I~ n) is a unit matrix and 

the symbci z denotes the Kronecker product of the matrices il3/', (1.1; Can be reduced to 
the fcrm 

(the vectcr d(mn x 1) is formed from the successively written columns of the matrix D!. 
Thus, Cl.11 reduces tc the stationary system (3.6) - but of higher dimensions - when the 

above conditions held. 
It was shown /li/ that fox such 2 reduction of the observation-non-stationary system 

(3.1)-(3.4) to the completely stationary system (3.6) the property of observability of the 

initial system is preserved. We can show that if the initial system is observable, then 2 
closed n-th order system to determine the initial variables y is separated from the expanded 
system (3.6). 

4. Consider the problem of constructing an estimate of the state vector 2 of systems 
(3.1)) (3.2). We will assume that (3.6) and, consequently, (3.11, (3.2) are observable. The 

estimation of the state vector is not completely the observable system considered in /12/. 
When constructing an estimate of the vector z we will proceed from the stationary system 

(3.6). The estimation algorithm has the form 

9 " = A,q” + K (u - drqc). q’ (to) = 0 (4.1) 
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Since (3.7) is observable then, as is known /14/, the vector K in Eq.(4.1) can be chosen 
as a constant guaranteeing any degree of attenuation of the error of the estimate Aq = q-q” 

II Aq 0) II < v1 w &t) 

where y, = const> II, and h, < 0 is any number specified in advance. 
We will show that the vector K CM be chosen so as to guarantee any degree of attenuation 

of the error of the estimate of the state vector of the initial non-stationary system Ay = 

Y - Y". 
The estimates @ and y" of the vectors g and y and the corresponding errors of the 

estimates Aq and Ay are connected, by virtue of (3.51, with the relations 

9" 0) = 2 (t) Y' (t), Aq (t) = 2 0) AY (0 (4.2) 

which are redefined sets of linear algebraic equations in the components of the vectors Y" (t) 
and Ay (I). 

We shall write the solutions of (4.2) in the form 

Y" (t) = J' 0) 9" (t), AY (t) = P 0) Aq (t) (4.3) 

where P(t) is a matrix satisfying the equation 

P (t) Z (t) = E, (4.4) 

(We can, for example, take the pseudoinverse matrix 8+ (t) as the matrix P (t).) 
By virtue of the second relation (3.5) the elements of the matrix 2 (t) are solutions of 

the linear system with constant coefficients (3.4). Bearing in mind relation (4.4), we will 
have 11 P (t) 11 < y2 exp (& 1). where yz > 0 and h, are certain constants. Then from relations 
(4.3) it follows that 

II AY (0 II G II P (t) llll~q (0 II < ylyz exp ((A, + U t) 

Choosing h,<h, -A,, we can obtain any degree of attenuation h, < 0 of the error of 
the estimate AY (t). 

We can directly obtain the estimate y"(t) as the solution of the differential equation 

Y *' = .4,y- + P (t) K (u - h* (t) y”) 

5. As is well-known /8, 10, 14/, the fact of the duality of problems of estimating state 
and control problems exists, consisting of the following statement: the system I' = A (t) z +- 

B (f) u is only controllable when the system I' = --AT (t)z,z = Br (t)z, conjugate to it, is 
observable. In this connection, the results obtained in /ll/ can be useful for investigating 
linear systems which are non-stationary with resepct to control and have a non-stationarity 
of a definite form. 

Consider the linear system 

E' = AE + Drf (2) u (5.1) 

where 5 is an n-dimensional vector describing the state of the system, A is a constant (n 

?I) matrix, DT(n ,.: m) is a matrix with constant elements, u is a scalar control, and j(i) 
is a known m .' I vector-function of time, which satisfies, as previously, the set of linear 
equations with constant coefficients (3.4). 

We shall determine for system (5.1!, (3.4) the stationary system corresponding to it, 
the variables of which are connected with the initial variables by known linear relations. 
We shall take a linear system conjugate to (5.11 

I' = -AT.z. z = fT (t) Dt (5.2) 

As shown above, using the change of variables (3.5;, system (5.1) can be reduced to the 
stationary system 

y' = Q'y. z = d=y (5.3) 

The matrix Q*is determined in a similar way to (3.6) using the formula 

Qr=--.4r@E,-E,@S (5.4) 

and the raw dT is formed form the successively located rows of matrix D: 

dr = (dlldlt . . . d,,. . .d,,ld,,t . ..d.,,,,) 

The stationary system, conjugate to (5.3), has the form 

n' = -Qq + du (5.5) 

We can show that the variables E and n are connected by the relation (Xr (t) is an 
n x mn matrix) 

E = TP (t) q, P (1) = E, 8 fT (t) (5.6) 

Thus, the transformation (5.6), in which t) satisfies system (5.5) with the initial 
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conditions q(to)= no. enables one 
by the set of equations 15.1) with 

Since the rank of the matrix 
(5.11 in the form f5.61, where 9 

Note that the controllability 
lability of (5.1). 

to obtain a state vector 5, h w ose behaviour is described 
the initial conditions E (1,) = ZT (to) q (to). 
ZT(te) equals R, we can represent the solution of system 
is a solution of the stationary system (5.5). 
of (5.5) is only a sufficient condition for the control- 

Suppose the transformation V= My, where B is the matrix l X mn, separates the observable 
subspace (v} from the space of the states {y). The vector v obeys the equation 

v'= Q1'v, z=dl=v (5.7) 

The matrices QIT and dl?, representing an observable pair, satisfy the relations $fQr = 
QlrJI, d'= drrM. The variables 5 and v are connected by the linear transformations 

V = Mr (t)s (5.8) 

and, as shown in /ll/, if (5.2) is observable, then rank&Y (2)= n. 
We will write the controlleble system, conjugate to (5.7) 

E' = -92 + 4u (5.9) 

We can show that the vector n = MTE, where E obeys Eq.(5.9) with the initial condition 
E(lo)= t,. will satisfy Eq.(5.5) with the initial condition n(f,)= MT&,. 

Summing up the above concerning the initial system (5.1) and the stationary systems (5.5) 
and (5.8), we obtain that the vector 

; = r* (t)MTE (5.10) 

where the vector E is a solution of the controllable stationary system (5.9j with the initial 
condition: 5 (to) = &. will satisfy Eq. (5.1) with the initial condition <(2,)= Zr(t,).lF&. and 
if (5.1) is ccntrollable, then according to (5.8) rank Zr(&,)Mr = n. 

Hence, the above method of reducing non-stationary controllable systems of the class 
considered to stationary systems enables us to reduce the solution of different problems of 
controlling such ncn-stationary systems, tc ccrresponding problems for stationary systems, the 
methods of sclving which are well developed. 

6. The technique presented can be use d to soive a fairly wide class of control and 
estimation problems. 

Suppose the mechanical system permits stationary xotation around some fixed axis in space. 
In many cases the equations in variations fcr +-his stationary motion in the fixed system of 
coordinates are a set of linear differential equations with periodic coefficients. 

When contrclling 'estimating) these systems r&l ems often arise in which the contrciling 
influences (neasurementsl are fox-me? in a flxeo set cf coordinates. Then the equations of 
the controllable &jest in a fixed set cf cccrdinates have the form 

$' = P it) E - B,u. P (t T Tp) = P (t) (U = If&) (t.1: 

Here u is the vector cf meas.Lrements ar,d B, and N, are CGnStant matrices. 
In a fixes set cf cocrdinates, ccnnecte6 with the rotatin? cbject, the eq.:atic?.s cf 

motion car. be represer.tee ir. the fGr;r. (P. is a constant matrix; 

Systez (6.2 belongs tc tts type cf systez (5.11 cr 3.i "-(2.4. 

Exaqle. 1'. The Eq;;6tiCr.S cf 3cKlc:A cf a rigid bod;y, st&ilizel by 5ear.s of its owi 
rotation, with mctcrs that are rigidly attached tc the body, have the for;r, (6.21 /IS/ 

I, =- 01* - u COS R,!. 12 = n*, - u 51rl S2,t (6.31 

Here I,. =* are projections cf the anvGiar velocity Gf the body On an axis, rigidly 

connected wit h it and crthogonal tG the axis of the rotation, R, is the angular velocity cf 

rotaticn, c is the costrcilinq factor, and a is some CGnStant. 
The change of variables of the type (5.6) 

I, = y, sin R,r - ypcOs R,t. *12 = ys sin 51,1 - y, cos R,r 

reduces (6.2) to tie statior,arj' system 

Y1' = it,&!,- OY,, Y,‘ = - QlY, - Q'yo + u (6.2: 

y*' = C&y,+ qfr - u, k' = - Q,Y, + w2 

Systen; (6.4) is non-controllable. From it the following controlling s*Lbsystem is easily 

separated: 
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In Eq.(5.10) the initial variables I,,+ are connected with the controllable variables 
a,+ by the transformation 

z1 = zI co6 O,t + r,sin R,t, I* = - z1 sin R,t + zp cos Q,t 

2'. The linearized equations of the perturbed motion of the material point 
orbit of radius r1 in a central field of forces in a fixed system of coordinates 
form 

a* = 1/n (1 f 3 cm Zr), b = *jt sin Zr, 7 = o,t 

(01 is the angular velocity of the rotation, 0,is the zero matrix, and E, is a 
matrix). 

(6.5) 

2 x 2) unit 

The equation of measurements in the case when the known distance from the point considered 
to another point, moving in the same plane along a known angular orbit of radius r2 with the 
angular velocity o*. has the form 

with a circular 
have the 

0 = (COS T - p cos n,r) I, + (sin T - p sin nlT)z, (6.6) 

(11, = o,:o,, p = r*'rl) 

where z,, x2 are the perturbations of the vector radius and the polar angle. The matrix A (T) 

is related to the type of matrix whose behaviour is described by Eq.(1.4) with matrix A, of 
the form 

According to /4/, the change of variables I = exp (A,1)!, reduces (6.5) to the stationary 
systelr. 

y' = A :‘I (6.il 
‘I ir 1 1 (I' 

0 
A?- .-l(n,-.-I,=',-; i, 

0 1 ‘, 
0 1 

0 -_I -1 !I 

The equations of measurements (6.6; in the variables 9 will t&e the form 

o = ii'y. h T = (1 - p c*c VT, p sin IT. (I. II;. \ = 77, - 1 !6.E! 

we can show that the vectcr 1; (?I does net satisfy an equation of the type (2.6), b?ut it 
is reuresented in the fcrrr (3.3!, (3.4). As in the transfcmation (3.51 WE will intro&ice 

In these variables systec !6.7:, (6.6: becomes ccxpletely staticnar:. 

9,' = 9? 2 y3 $ !\9,. !:,' = $> - !i; 

pz' = -9, - 9r - '\'9:. !,_' = -y, -- !!, 

93' = 29, T 9, - '\9.,, 113' : Z!,, - !;a 

9r' = -Qz - 93 G 'V9,. u,' = -,I,? - !'3 

(6.9) 

Note that when analysing the cbservahility of (6.9) we 
the equations for the ccn~'~gatc variables ?!:(A = 1,2,3.4) and 
mea5urements (6.10) in the fcrr; 

The procedure used in Example i0 was used /16; in the problem;: of correcting an intertial 
navigation system using additional data on the distance from the object to an artificial 
navigation satellite. Note, alsc, that equations of type (6.1) occur in the problem of correct- 
ing inertial navigation systems in the case when the object banks correctly /17/. 

(6.10) 

should take intc consideraticn 
sho.uld represent the equatic:. cf 

REFERENCES 

1. ERUGIN N.P., Linear sets of ordinary differential equations with periodic and quasiperiodic 
coefficients. Minsk: Izd-vo AN BSSR, 1963. 

2. SALAKHOVA I.M. and CHEBOTAREV G.N., The solvability in finite form of some sets of linear 
differential equations. Itv. v~ov. Matematika, 3, 1960. 

3. WL' M.-Y and SHERIF A., On the commutative class of linear time-varying systems. Internat. 
J. Control, 23, 3, 19i6. 



428 

4. WU M.-Y., Transformation of a linear time-varying system into a linear time-invariant 
system. Internat. J. Control, 27, 4, 1978. 

5. WU M.-Y., A successive decomposition method for the solution of linear time-varying systems, 
Internat. J. Control, 33, 1, 1981. 

6. LYAPUNOV A.M., The general problem of the stability of motion. Moscow-Leningrad: Gostekhizdat, 
1950. 

7. ERUGIN N.P., Reducible systems. Tr. Matem. in-ta im. V.A. Steklov, 13, 1946. 
8. KRASOVSKII N.N., Theory of motion control. Moscow: Nauka, 1968. 
9. SILVERMAN L.M. and MEADOWS H.E., Controllabilitv and observabilitv in time-variable linear 

10. 

11. 

12. 

13. 
14. 

15. 

16. 

17. 

systems. SIAM J. Control, 5, 1, 1967. 
_ 

D'ANGELO G., Linear systems with variables parameters. Moscow: Mashinostroenie, 1974. 
MINTS N.B., MOROZOV V.M. and UKRAINTSEV S.V., Estimation of the state vector of linear 
systems which are non-stationary under observation, In: Some problems of the theory of 
navigation systems. Moscow: Izd-vo MGU, 1979. 

PARUSNIKOV N.A., MOROZOV V.M. and BORZOV V.I., The correction problem in inertial naviga- 
tion. Moscow: Izd-vo MGU, 1982. 

BELLMAN R., Introduction to matrix theory. Moscow: Nauka, 1969. 
KALMAN R., FALB P. and ARBIB M., Outlines of the mathematical theory of systems. Moscow: 
Mir, 1971. 
L~~E~HTADT R., A system for controlling a space apparatus - stabilized by its own 
rotation - which is optimal in speed of response and fuel consumption. In: Control in 
space. 2, Moscow: Nauka, 1973. 

KALENOVA V ,I. and MOROZOV V.M., Observability in the problem of correcting inertia' 
navigaticn systems using additional dtaa from an aritificial satallite, Kosmich. 
issledovaniya, 22, 3, 1984. 

MOROZOV V.M., MATASOV A.I. and SHAKOT'KO A.G., The observability of the parameters of an 
inertial navigation system in correct banking. Izv. AN SSSR. MTT, 4, 1982. 

Translated by H.Z. 

U.S..S.R.,Vol.49,No.4,pp.428-433,1985 
Printed in Great Britain 

0021-8928/85 $10.oo+O.O~ 
Pergamon Journals Ltd. 

FLUCTUATION HYDRODYNAMICS OF THE BROWNIAN MOTION OF A PARTICLE 
It; A FIXED DISPERSELLAYER' 

A.G. BASHKIROV 

The isiflueme of the perturbation exerted by a grid of fixed spherical 
particies, raxdorr.ly distributed in space, on the Brownian diffusion of 
particles suspended in the flow of a fluid which penetrates the grid is 
disucssed. The fixed particles affect the coefficient of diffusion that 
is transverse to the flow in twc ways: on the one hand they reduce it in 
accordance with the Stokes coefficient, and on the other they increase it 
because of the influence of a random velocity field which is generated by 
the flow past the randomly distributed particles. A convective diffusion 
equation is derived on the basis of the Fokker-Planck equation for a 
distribntion function. A stochastic diffusion equation (of Langevin's 
type! obtained with a random velocity field is solved by the method of 
Green's function, whence the desired diffusion coefficient is found. The 
errors allowed when solving a similar problem in /l/ are indicated. 

The fluctuation hydrodynamics of Brownian motion in a homogeneous 
viscous fluid was discussed in /2/ where, in particular, an expression for 
the coefficient of the particle resistance was obtained in terms of the 
fluctuation characteristics of the fluid. Later, the influence of hydro- 
dynamic fluctuations on the diffusion of a particle in a homogeneous fluid 
was examined in /3/: it was shown that the diffusion coefficient of a particle 
that is large with respect to intermolecular distances is determined 
entirely by the thermal fluctuations cf the fluid velocity field. This 
result was also confirmed by the microscope kinetic theory of Brownian 
moticn in 14. 5.t. where an exoression similar to Xubo's formula, for the 
coefficient of resistance of a large particle in terms of the fluctuation 
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