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THE TRANSFORMATION OF LINEAR NON-STATIONARY OBSERVABLE AND CONTROLLABLE
SYSTEMS INTO STATIONARY SYSTEMS

N.B. VAVILOVA, V.I. KALENOVA and V.M. MOROZOV

The methodclogical problems of the reducibility of some classes of linear
non-stationary observable and contrcllable systems to stationary systems
is considered. The constructive use of this property to analyse the
controllability and observability of non-stationary systems, and also to
solve applied control and estimation problems, is proposed.

For practical applications the separation of the classes of non-
stationary systems, which can be investigated using simple and effective
methods similar tc those for analysing stationary systems, is of interest.
Linear non-stationary systems for which the fundamental matrix of the
solutions can be algorithmically simply constructed using the matrix of the
coefficients, pertain to these calsses; in particular systems which can be
reduced to stationary systems /1-5/using the well-known non-degenerate
transformation, and also systems which are Lyapunov-reducible /6, 7/.
Although for non-stationary systems the sufficient conditions for control~
lability and observability which do not require a knowledge of the funda-
mental matrix of the initial syster /8~10/ are known, the search for
constructive transformations which reduce the initial system to a form
suitable for analysing and synthesizing simple control and estimation
algorithms is important and useful.

1. cConsider the linear non-stationary system
r=A{®z+B({u c=C()z {1

where z is an n-dimensional state vector of the system, u is an r-dimensional vector of the
controlling action, ¢ is a k-dimensional vector of measurements and At B({), C(t) are
matrices of corresponding dimensions, the elements of which are continuously differentiable
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functions of time t.

It is known that in a number of cases /1-—5/ the fundamental matrix of system (l.l) can
be found in explicit form using the elements of the matrix A4 (f), in particular when the matrix
A (t) belongs to one of the following classes: 1) the constant matrix, 2) the diagonal matrix,
3) the triangular matrix, 4) satisfies the condition

1

ot
An|lamad]=[famaaw (1.2)

[} i0

5) the matrix A4, =const and the non-zero function V¥ (!) exist, such that

d [ A
E_(_?(t) )=A1A (t)— A@) A

if ¥ (t)=1, then A (t) obeys the eguation
A ()= AA (1) — A (1) A, (1.3)

Other cases, including more general ones, in which the matrix A4 (f)is subject to fairly
complex conditions, are presented in /1, 2, 5/. Note that one special class of matrices
A (t) - which satisfy condition (1.2), considered in /3/ - was previously investigated in a
more general form /2/.

We will consider systems of the form (l1.1), in which the fundamental matrix can be found
in closed form. We shall determine the conditions for reducing the non-stationary system
(1.1) tc a stationary systen.

2, sSuppose @ (f) is the fundamental matrix of the system, corresponding to the first
equation (1.1) (® ({,) = E). Then the linear transformation

r=Q )y (2.1)

reduces system (1.1) toc the form

L3
o
~

y=N@Ou, o=H()y (
HBH=COyd@). N =3B (1)

Theorem 1. Using a linear non-degenerate transformation we can reduce (2.2) to a com-
pletely stationary systerm of the same order

=R — Vu. o= Lz (2.3
(containing the matrices z (n ~ 1). R (n n). M (n - r). L (k. n)) only when the matrices H (1).
N (1) satisfy the eguations

H = HG, \N' = -GN (2.4
(G (n x n) is a constant matrix). At the same time the matrices R.L and M in systen (2,3)

are determined by the relaticns
R=G. L=H{u) M=XN(()

Proof., Sufiiciency. The transfcrmation y = exp (—G {t — 13))z reduces {2.2) to the form
=G — N({)u, 6=~H{():
Necessity. Suppose the transformation y = (: reduces (2.2} tc the form (2.3). Then
the matrix Q () satisfies the eguation Q = —QR (Q(!,) = E). Differentiating the eguations
HNOQGW=L. N{)=0 ()M we cotain H' = HR. \* = —RX\.

For the first eguation (1.1} with matrix A () of the above type, besides the transforma-
tion (2.1) other linear non-degenerate transfcrmaticns alsc exist, reducing (1.1) to the form
' =A'z2" -+ B (Yu. 6 =C (1)z'; A" = const (2.5)
In particular, if the matrix A (f) satisfies condition (1.3), the transfcrmation r =
exp (4, (I — 1)) x' reduces the first equation (1.1) to the form (2.5), where A' = A ({,) — 4,.
Note that any system (l.1!, in which a system corresponding tc the first equation (1.1)
when B ()= 0 is reducible in Lyapunov's sense /6, 7/ can be transformed to the form (2.5).

Consider system (2.5). The transformation z'=exp (4’ (I — 1))y reduces this system to
the form (2.2), where

H(t)y=C (thexp (A" (t — ()N (t) = exp (—A" (1 — tNE" (1)
Then from Theorem 1 we have

Theorem 2. System (2.5) reduces to the stationary system (2.3) only when the matrices
C' (1), B’ () satisfy the equations
C’ ' =C |—A +exp (4’ (1 —1,)Gexp(—A4"(t — 1,))] (2.6}
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B =[A" —exp (A" (t —t)Gexp(—A'(t ~t))] B
(G(n < n) is some constant matrix).
In particular, if the matrix G is such that the condition A'G = GA' holds, then C' ()
and B’ (t) satisfy the equations

C'=C(—A"+G), B =(A -G F (2.7

Corollary. Suppose the matrices C' (i) and B’ (tf) obey the equations C"=CK, F =
—KB’, where K is a constant matrix and KA’ = A’K, then the change of variables z’ = exp (—
K (t — 1p)) z reduces (2.5) to the stationary system (2.3), where R= A"+ K, M = B’ (t,). L = C’ (1,).

Note that it is more convenient, without verifying the validity of condition (2.6), to
construct the matrices H (f), N ({) and then verify that conditions (2.4) hold.

3. The theorems formulated in Sect.2 give the necessary and sufficient conditions for
the possibility of reducing the non-stationary system of the type considered to a stationary
system without increasing the order cf the initial system.

Consider the more general.case when the non-stationary system (1.1) can be transformed
into a completely stationary system using a change of variables which expands the state space,

We will further assume that in the first equation (1.1) B (t)=0. Suppose it is reduced
to the form (4, is a constant matrix)

y=A4y (3.4)
using the transformation
=T )y, det T ()0, Vt = ¢,

The equation of measurements (the second eguation (l1.1}) after changing to the new
variables has the form
oe=C@)T(Hy=H, (D)y (3.2)

(when T(t)=® (), 4, =0, H (1) =H @)

For simplicity, we shall assume that the matrix C () is a 1 .. n matrix, then H,(t)=
AT (1), where h(?) (n > 1) is & cclumn-matrix.

We will assume that A7 (t) can be represented in the form

AT (t) = iT (1) D (3.3

where D is some constant m < n matrix and f(t) is a m < 1 (m > n) vectcr~function of time
satisfying the egusaticn ,
f = Si. S(m .. m)= const. (3.4)

This means, in particular, that functions such as polynomials, exponential functions,

finite sums of trigonometric functicns, etc., beleng to the class of functions Ay (1) (I =1, 2,
., n) which are compcnents of the vectcr h(t) and are separated in this way.

The vector-function AT (¢), defined by Eqg.(3.3), in the general case does not satisfy an
equation of the form (2.7}, and for system (2.1'=—(2.4! the conditions for reducing it toc a
staticnary systen of the same order dec nct held. In particular, if D = E and h () obeys
Eq. (3.4), it is necessery that A,S8T = §T4 .

It is shown in /1ll/ ‘see alsc /12/., that, using the transformation

g=Z Wy TN =E, i) (3.5
where I (1) is an mn » n matrix, g is an mn < 1 vector, E,(n » n) is & unit matrix and
the symbcl & denotes the Kronecker product of the matrices /13/, (1.1} can be reduced tc
the form

q':Aqq- Ozd:rq (‘4q=En€ S — Ay\;: Em) (3“)

(the vector d{(mn x 1) is formed from the successively written columns of the matrix D).

Thus, (1.1) reduces tc the stationary system (3.6) - but cof higher dimensions ~ when the
above conditions held.

It was shown /11/ that for such & reduction of the cbservation-non-stationary system
(3,1)~(3.4) to the completely stationary system (3.€) the property of observability of the
initial system is preserved. We can show that if the initial system is observable, then a
closed n-th order system to determine the initial variables y is separated from the expanded
system (3.6).

4. Consider the problem of constructing an estimate of the state vector z of systems
(3.1), (3.2). We will assume that (2.6) and, censequently, (3.1), (3.2) are observable. The
estimation of the state vector is noct completely the observable system considered in /12/.

When constructing an estimate of the vector z we will proceed from the stationary system
(3,6). The estimation algorithm has the form

¢ =A" + Ko —d7g). ¢ (tg) =0 (4.1)
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Since (3.7) is observable then, as is known /14/, the vector X in Eq.(4.1) can be chosen
as a constant guaranteeing any degree of attenuation of the error of the estimate Ag =g — ¢°
Il &g (1) 1] < ¥y exp (M)

where y, = const >0, and A, <0 is any number specified in advance.

We will show that the vector K can be chosen so as to guarantee any degree of attenuation
of the error of the estimate of the state vector of the initial non-stationary system Ay =
y—¥.

The estimates ¢° and J° of the vectors g and y and the corresponding errors of the
estimates Ag¢ and Ay are connected, by virtue of (3.5), with the relations

F)=Z @)y (), Ag(t)=Z () Ay (1) (4.2)
which are redefined sets of linear algebraic equations in the components of the vectors y°(?)
and Ay (2).

We shall write the solutions of (4.2) in the form

Yy =P)g (1), Ay()=P(t)dq() (4.3)

where P (f) is a matrix satisfying the equation
P) 2 (t) = E, (4.4)

(We can, for example, take the pseudoinverse matrix X*(f) as the matrix P (1).)

By virtue of the second relation (3.5) the elements of the matrix X () are solutions of
the linear system with constant coefficients (3.4). Bearing in mind relation (4.4), we will
have ||P ()}l < y.exp (2, t). where y,>0 and A, are certain constants. Then from relations
(4.3) it follows that

1Ay O <<HP @) I1NIAg () 1] < vavs exp (A + A5) 7)

Choosing A; < Ay — %,, we can obtain any degree of attenuation Ai,<{0 of the error of
the estimate Ay (t).
We can directly obtain the estimate y°(f) as the solution of the differential equation

yo=Ay ~ P (t)K (6 — kT (t) y°)

5. As is well-known /8, 10, 14/, the fact of the duality of problems of estimating state
and control problems exists, consisting of the following statement: the system 2 =4 (t)z
B (t)u is only controllable when the system z = —AT (t)z,z = BT ({)z, conjugate to it, is
observable. In this connection, the results obtained in /1l/ can be useful for investigating
linear systems which are non-stationary with resepct to control and have a non-stationarity
of a definite form.

Consider the linear system

F=At+D7f () u (5.1)
where t is an n-dimensional vector describing the state of the system, 2 is a constant (n
n) matrix, DT (n .~ m) is a matrix with constant elements, u is a scalar control, and 7 (i)
is a known m » 1 vector-function of time, which satisfies, as previously, the set of linear

equations with constant coefficients (3.4).

We shall determine for system (5.1), (3.4) the stationary system corresponding to it,
the variables of which are connected with the initial variables by known linear relations.
We shall take a linear system conjugate to (5.1)

= —ATz, 2z = [T (t) Dz (5.2)

As shown above, using the change of variakbles (3.5}, system (5,1) can be reduced tc the
stationary system

y =07y, z=dly .3
The matrix Q7 is determined in a similar way to (3.6) using the formula
QT=—ATQE, - E,®S5 (5.4)

and the raw dT is formed form the successively located rows of matrix D:
dT = (d);dyy . . . Ay o Aadpe .. dpy)
The stationary system, conjugate to (5.3), has the form
N = —~Qn + du (5.5)

We can show that the variables ! and 1 are connected by the relation (ZT(f) is an
n X mn matrix)

E=2"n ET=E.31 (1) (5.6)

Thus, the transformation (5.6), in which 1n satisfies system (5.5) with the initial
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conditions 7 (t¢) = 1. enables one to obtain a state vector &, whose behaviour is described
by the set of eguations (5.1) with the initial conditions & (tp) = Z7 (t) m (t,).

Since the rank of the matrix ZI7 (f) equals n, we can represent the solution of system
(5.1} in the form (5.6}, where % is a solution of the stationary system (5.5).

Note that the controllability of (5.5) is only a sufficient condition for the control-
lability of (5.1).

Suppose the transformation © = My, where M is the matrix [ X mn, separates the observable
subspace {v} from the space of the states {y}. The vector v obeys the eguation

v'=erv, z=4d,Tv (5.7}

The matrices @7 and d,7, representing an observable pair, satisfy the relations MQ7T =
GTM,dT =d,TM. The variables z and » are connected by the linear transformations

v= M3 ()z (5.8

and, as shown in /11/, if (5.2) is observable, then rank MZ (1) = n.
We will write the controllable system, conjugate to (5.7)

B o= @t + du (5.9

We can show that the vector w = MTE, where ¥ obeys Eg.{5.9) with the initial condition
E(ty) = E,. will satisfy Eg.(5.5) with the initial condition 7 ({o) = MTE,.

Summing up the above concerning the initial system (5.1) and the stationary systems (5,5)
and (5.8), we obtain that the vector

L= 3T (OMTE (5.10)

where the vector ! is a solution of the controllable stationary system (5.9) with the initial
condition § (f,) = &,. will satisfy Eg,(5.1) with the initial condition [ {{,) = ZT () M7E,. and
if (5.1} is contreollable, then according to (5.8) rank Z7 () M7 = n.

Hence, the above methed of reducing non-stationary controllable systems of the class
considered to stationary systems enables us to reduce the solution of different problems of
controlling such nen-stationary systems, tc corresponding problems for stationary systems, the
methods of sciving which are well developed.

6. The technigue presented can be used to soclve a fairly wide class of control and
estimation problems.

Suppose the mechanicel system permits stationary rotation around some fixed axis in space.
In many cases the eguationg in variations fer this stationary motion in the fixed system of
coordinates are a set of linear differential equations with periodic coefficients,

wWnen contrclling {estimating) these systems rcklems often arise in which the contrcliling
influences {(measurerents, are formed in a fixed set cf ceoordinates. Then the eguations of
the controlilable ckject in a fixed set of cocrdinates have the form

=P+~ Bu, P~ Tpy=P() (0d=HE) (€.1}
Here ¢ is the vector of measurements and Byand H; are constant matrices.
In a fixed set cf coordinates, connected with the rotating cbject, the eguaticns cf
motion carn be represented in the form (A is a constant matrix)
r=Azr=-B{)u {oc=H{) x) (6.2)
Bu—Tp)=8Bu), Hit —Tp)=H{)

ysten (5.1 cr (Z.ii-(2.4,

System (6.2 belongs tc the type of

L]

I s
Example. 17 . The eguaticrs

of meticn of a rigid body, stabilized by mweeans of its own
rotaticn, with mctcrs that are rigi

dly attached tc the body, have the form (6.2) /15/
) = a7, 4+ ucos Qt. 7,0 = ar;, — u sin Q¢ {€,3}
Here 1,.r, are projections of the angular velocity of the body on an axis, rigidly
connected with it and orthogonal tc the axis of the rotation, Q, is the angular velocity of
rotaticn, v is the contrelling factor, and a is some constant.
The change of variables of the type (5.6)
7y = y; SiD Ut — yyco8 Q. 1, = yg Sin Q1 — y, cos Qt
reduces (€.3} to the stationary systen
= Sy — ays, Yo = =y — aye v 6.4;
yy = Qe+ ey — v S = — Quys -+ Ay
System (6.4) is non-controllable. From it the following controlling subsystem is easily
separated:
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HW=—@+Q)ntu 5=+
B=hn—uun=yn+uw
In Eg.(5.10) the initial variables 2,2, are connected with the controllable variables
8,3, by the transformation
z, = 2, 08 1 + 3 8in Qit, 7, = — 2z, sin Q)¢ + 2, cos Q¢

2°. The linearized equations of the perturbed motion of the material point with a circular
orbit of radius r, in a central field of forces in a fixed system of coordinates have the
form

T =A4A(1)z A(r):ﬂ% 21", F.—.—.n;'a_b” (6.5)

a, =y (1 4+ 3cos21), b=3,sin21, 1= wt

(s, is the angular velocity of the rotation, 0, is the zero matrix, and E, is a 2 x2) unit
matrix) .

The equation of measurements in the case when the known distance from the point considered
to another point, moving in the same plane along a known angular orbit of radius r, with the
angular velocity e, has the form

0 = {cOS T — p €OS n,T) 7; 4 (sin T — p sin mT) 7, (6.6)
(n, = @y/e), p=ryr)

where =z, 7, are the perturbations of the vector radius and the polar angle. The matrix 4 (1)
is related to the type of matrix whose behaviour is described by Eq. (1.4) with matrix 4, of

the form
7 O [0 —1
A=t 51 =0 ]

According to /4/, the change of variables =z = exp(4,/)v reduces (6.5) to the stationary
system .
y = A (6.7
i 1 1 0
P I N (K
A A== 0 0

D0 =1 —1 0

The equations of measurements (6.6, in the variables y will take the form

6=hTy AT = (1 —pcosvr, psinyr. 0, Vi v=n —1 (6.8)
We can show that the vector k(1) does nct satisfy an eguation of the type {(2.6), but it
is represented in the form (3.3), (3.4). As in the transfcrmation (3.5) we will introduce
the variskbles g = yy exp (ivt) (k= 1.2.3. &
In these variables system (€.7), (€.8) becomes ccmpletely staticnary
9 =g ga T Vo 1y =y — ks (6.9)
9 = —q g iV W=yt
g =200+ g ivgy, M = 2m v
@ = —G— gy Vg U = — g
o=y —pReg, —plmyg, (6.10)

Note that when analysing the cbservability of (6.9} we should take intc consideraticn
the equations feor the conjugate variakles ¢ (k= 1,2, 3. 4 and should represent the eguaticn of
measurements (€.10) in the feornm

H—9 g: — 4>
1 1_0___2_

S=lh—p ) t

< ~O : : . .
The procedure used in Example 2~ was used /16/ in the prcblem of correcting an intertial

navigation system using additional data on the distance from the object tc an artificial
navigation satellite. Note, alsc, that equatiocns of type (6.1) occur in the problem of correct-
ing inertial navigation systems in the case when the object banks correctly /17/.
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FLUCTUATION HYDRODYNAMICS OF THE BROWNIAN MOTION OF A PARTICLE
IN A FIXED DISPERSEL LAYER™

A.G. BASHKIROV

The influence of the perturbation exerted by a grid of fixed spherical
particles, randomly distributed in space, on the Brownian diffusion of
particles suspended in the flow of a fluid which penetrates the grid is
disucssed. The fixed particles affect the coefficient of diffusion that
is transverse to the flow in twc ways: on the one hand they reduce it in
accordance with the Stokes coefficient, and on the other they increase it
because of the influence of a random velocity field which is generated by
the flow past the randomly distributed particles. A convective diffusion
equation is derived on the basis of the Fokker-Planck equation for a
distribution function., A stochastic diffusion equation (of Langevin's
type! obtained with a random velocity field is solved by the method of
Green's function, whence the desired diffusion coefficient is found. The
errors allowed when solving a similar problem in /1l/ are indicated.

The fluctuation hydrodynamics of Brownian motion in a homogeneous
viscous fluid was discussed in /2/ where, in particular, an expression for
the coefficient of the particle resistance was obtained in terms of the
fluctuation characteristics of the fluid, Later, the influence of hydro-
dynamic fluctuations on the diffusion of a particle in a homogeneous fluid
was examined in /3/: it was shown that the diffusion coefficient of & particle
that is large with respect to intermolecular distances is determined
entirely by the thermal fluctuations of the fluid velocity field. This
result was also confirmed by the microscope kinetic theory of Brownian
motien in /4, 5/, where an expression similar to Kubo's formula, for the
coefficient of resistance of a large particle in terms of the fluctuation
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